
Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

Marvin Damschen, Lars Bauer, Jörg Henkel

Vorlesung im SS 2016

- 1 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 2 -

4. Fine-Grained Reconfigurable Processors

- 3 - M. Damschen, KIT, 2016

1. Introduction

3. Special Instructions

6. Coarse-Grained
Reconfigurable Processors

8. Fault-tolerance
by Reconfiguration

2. Overview

4. Fine-Grained
Reconfigurable Processors

7. Adaptive
Reconfigurable Processors

5. Configuration Prefetching

• PRISM

• PRISM-II

• Garp

• MOLEN

• PRISC

• OneChip

• OneChip98

• XiRISC

• XiSystem

• New FPGA
Architectures

- 4 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 5 - M. Damschen, KIT, 2016

 PRISM-I system: external
stand-alone processing
unit
◦ Two boards that are inter-

connected by a 16-bit bus

◦ Processor board: Motorola
68010 processor running at
10 MHz

◦ Accelerator board: four
Xilinx 3090 FPGAs

 Hardly run-time reconfi-
gurable, i.e. it takes nearly
one second to reconfigure
the FPGAs

src: [WAL+93]

- 5 -

- 6 - M. Damschen, KIT, 2016

 Observation: an adaptive micro-architecture cannot be designed by the
application programmer (limited expertise)

 Solution: High Level Language compiler, so-called configuration compiler

 “The configuration compiler […] is a special compiler that accepts a high-
level language program as input, and produces both a hardware image
and a software image” [WAL+93]
◦ Identifying Hot spots (with manual interaction)

◦ HW/SW partitioning

◦ Generating SIs

src: [WAL+93] M. Damschen, KIT, 2016

- 7 - M. Damschen, KIT, 2016

 Hardware Limitations:

◦ PRISM-I is the first implementation of the PRISM

concept, i.e. it is a proof-of-concept

◦ Slow reconfiguration speed (nearly one second)

under software control

◦ FPGAs provide only a limited speed and capacity

◦ Slow communication: between 45 and 75 clock

cycles (at 10 MHz) to move operands to an SI and to

collect the results

- 8 - M. Damschen, KIT, 2016

 Tool Chain Limitations:

◦ State and global variables are not supported

◦ At most 32-bit input bits and 32-bit output bits

respectively (may be distributed among multiple

variables)

◦ No support for variable loop counts (i.e. not

supporting “for (i=0 to n)”, where n is variable)

◦ Only single-cycle SI implementations

◦ Limited support for C data types (e.g. no ‘float’) and

C constructs (e.g. no ‘do-while’ or ‘switch-case’)

- 9 - M. Damschen, KIT, 2016

 Improved System: PRISM-II

 Supports larger parts of the C language specification

 Supports synthesis

of sequential

logic for execu-

tion of loops

with variable

loop counts

(i.e. unknown

at compile

time)

src: [WAL+93]

- 10 - M. Damschen, KIT, 2016

 The parsing and

optimization stage

builds on top of GCC

◦ GCC used a variation

of a register transfer

language at that time

 The synthesis is done

using ‘VHDL Designer’

or ‘X-BLOX’

src: [WAL+93]

- 11 - M. Damschen, KIT, 2016

 AMD Am29050 at 33
MHz, 28 MIPS

 Coprocessor-like
reconfigurable fabric

 64-bit bus
◦ Using the Address Bus

and the Data Bus at the
same time

◦ Only 32-bit results are
allowed

 Tighter coupling
◦ Only 30 ns data

movement cost (i.e. 1
cycle @ 33 MHz)

src: [WAL+93]

- 12 - M. Damschen, KIT, 2016

 3 Xilinx 4010 FPGAs
◦ An SI may spread over all 3 FPGAs

 By utilizing data buffers, the
FPGAs can work together or
perform individual tasks

 The “Global Bus” provides
control signals to be shared
between FPGAs
◦ used for providing global clocks

◦ or transferring state information
between the FPGAs

 Reported Speedup:
◦ 86x for simple bit reversal

◦ 10x for computing a Hamming code

src: [WAL+93]

- 13 - M. Damschen, KIT, 2016

 Very early approach (1993) for a loosely coupled

reconfigurable component

 PRISM-I: external Processing unit

 PRISM-II: external Coprocessor (to some degree)

 Very slow coupling

 Very slow reconfiguration time (range of seconds, not

milliseconds)

 Relies on very old FPGAs (from today's perspective)

◦ Multiple FPGAs are combined to obtain a reasonable
amount reconfigurable fabric

- 14 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 15 - M. Damschen, KIT, 2016

 Research effort on overcoming the limitations of reconfigurable HW
◦ Reconfiguration overhead

◦ Memory access from reconfigurable hardware

◦ Binary compatibility of executables across version of reconfigurable hardware

 Core processor and reconf. fabric on same die
◦ Core processor: a single-issue MIPS-II

◦ Reconfigurable Fabric as Coprocessor, but needs
some modifications in the core processor

◦ However, no actual chip produced

 Core processor and reconf. fabric
share the same memory hierarchy

 SW controlled run-time reconfiguration

 Reconfigurable fabric runs asynchro-
nously to the core processor
◦ Reconfigurable fabric: estimated 133 MHz

src: [HW97]

- 16 - M. Damschen, KIT, 2016

 Reconf. fabric is a
2D-mesh com-
posed of entities
called blocks

◦ Number of columns
is fixed to 24 (1
control and 23
logic blocks)

◦ Some special
purposes blocks

◦ Number of rows is
implementation
specific and can
grow in an upward-
compatible fashion
(expected to be at
least 32)

src: [HW97]

- 17 - M. Damschen, KIT, 2016

 Memory accesses can be initiated by the reconfigurable
fabric, but only through the central 16 columns

 Extra blocks for overflow checking, rounding, control
functions, wider data sizes etc.

src: [HW97]

- 18 - M. Damschen, KIT, 2016

 Partially reconfiguring the reconfigurable

fabric is supported
◦ Basic reconfigurable unit is a row of 24 blocks, a

so-called reconfigurable ALU

◦ SI size is defined by #rows ( 1D structure)
 A row is exclusively used by at most one SI, i.e. it is

not allowed that some logic blocks in a row are used
for Sii and some others in the same row are used for
Sij, j≠i

◦ Fabric is blocked during reconfiguration

◦ Supports run-time relocation (a hardware translates
from logical to physical row number)

- 19 - M. Damschen, KIT, 2016

 Each logic block takes

as many as four 2-bit

inputs and produces

up to two 2-bit

outputs

 Routing architecture:

◦ 2-bit buses in horizon-

tal and vertical columns

◦ global & semi-global

lines

src: [HW97]

- 20 - M. Damschen, KIT, 2016

 Each logic block can be configured to perform
◦ an arbitrary 4-input bitwise logical function,

◦ a variable-length shift of up to 15 bits,

◦ a 4-way select (multiplexer) function, or

◦ a 3-input add/subtract/comparison function

 Garp made a first step to integrate specialized
hardware blocks into a partially reconfigurable
processor (not only LUTs)
◦ Multi-bit adders, shifters etc. are designed with ‘more

hardware’ than typically FPGAs at that time

 Each logic block includes four bits of data state
(i.e. registers); in total 92 bits per row

- 21 - M. Damschen, KIT, 2016

src: [HW97]

 The routing architecture includes 2 bit
horizontal and vertical lines of different
length, segmented in a non-uniform way
◦ Short horizontal segments spanning 11 blocks

are tailored to multi-bit shifts across a row

◦ Note: the figures shows the routing for
one row/column of logic blocks, respectively

M. Damschen, KIT, 2016

- 22 - M. Damschen, KIT, 2016

 Data input/output
◦ Up to 128 bits per cycle

to/from any 4 rows in
the fabric

◦ Up to 64 bits per cycle
from the MIPS core
register file to any 2
rows

◦ Up to 32 bits per cycle
from any row back to
the MIPS core register
file

 Dedicated Queues
◦ Allowing read ahead and

write behind

src: [CHW00]

- 23 - M. Damschen, KIT, 2016

 For fast reconfiguration, the reconfigurable fabric

features a transparent distributed configuration cache

◦ Holds the equivalent of 128 total rows of configurations

◦ Distributed as 4 cached configuration rows for each
physical row

◦ Stores the least recently used configurations

◦ Content can be pre-fetched

 Reconfiguration time from external memory is 12

external bus cycles per row plus some startup time

 Reconfiguration time from the integrated cache is 4

cycles (independent of the number of rows)

- 24 - M. Damschen, KIT, 2016

 Reconfiguration
◦ A block requires 64 configuration bits

◦ Configuring 32 rows: 8 [Bytes/block] x 24 [blocks/row] x 32 [rows] =
6144 Bytes

◦ Assuming 128-bit memory access, 384 sequential accesses are required

◦ Approx. 50 micro seconds (depending on the bus)

 To accelerate context switching, the Garp array does not contain
large amount of embedded memory (if an SI needs some data
twice, it typically has to load it twice)

 Supports virtual memory, supervisor mode, and protected
execution of multiple processes

 Reported speedup (for hand-coded functions) compared to a 4-
way superscalar UltraSparc 170:
◦ 43x for an image median filter

◦ 18.7x for DES encryption

- 25 - M. Damschen, KIT, 2016

 The host has instruction set extensions (ISEs) to

configure and control the reconfigurable fabric
◦ Some instructions interlock (i.e. stall) until completion

◦ Array execution is initialized by the number of clock
cycles that shall be performed

src: [HW97]

- 26 - M. Damschen, KIT, 2016

 Example for loading and executing an SI:

 add3: la v0,config_add3 # v0 now contains pointer
 # to ‘config_add3’ array
 gaconf v0 # Configure
 mtga a0,$z0 # Transfer input data
 mtga a1,$d0
 mtga a2,$d1,2 # Move 3rd input and let
 # array exec. for 2 cycles;
 mfga v0,$z1 # Collect result
 j ra # Return from subroutine

src: [HW97]

- 27 - M. Damschen, KIT, 2016

 Uses the SUIF C compiler for the front-end

 Accelerates non-nested loops

 The compiler performs the following tasks:
◦ Kernel identification for executing on

reconfigurable hardware

◦ Design of the ‘optimum’ hardware for the kernels
 This includes module selection, placement, and

routing for the kernels

◦ Modification of the application to organize the
interaction between processor instructions and the
reconfigurable instructions

- 28 - M. Damschen, KIT, 2016

 The compiler uses a technique first developed for
VLIW architectures called hyperblock scheduling
◦ These transformations can increase the available

instruction-level parallelism (ILP)

◦ A contiguous group of basic blocks is converted into a
hyperblock
 Potentially from alternative (if-then-else) control paths
 Control flow inside a hyperblock is converted to predicated

execution

◦ Optimizes for ILP across common paths
 Often executed paths are synthesized to the reconf. fabric
 Infeasible or rare paths are implemented on the core processor

◦ The resulting reduced hyperblock is the basis for mapping

◦ When execution takes an excluded path (i.e. not part of the
synthesized logic), an exceptional exit occurs

- 29 - M. Damschen, KIT, 2016

 After hyperblock scheduling, interfacing instructions for
the core processor are generated and the reduced
hyperblock is transformed into a data flow graph (DFG)

 The proprietary ‘Gamma tool’ maps the DFG onto Garp
using a tree covering algorithm which preserves the
datapath structure and supports features like carry chains
◦ Gamma first splits the DFG into subtrees and then matches

subtrees with module patterns which fit in one Garp row

◦ During tree covering, the modules are also placed in the array

◦ After some optimizations the configuration code is generated and
assembled into binary form

◦ Configuration bits are included and linked as constants with
ordinary C compiled programs

- 30 - M. Damschen, KIT, 2016

 Attaches the reconf. fabric as Coprocessor (executes asynch.), but needs
some modifications in the core processor for interfacing instructions

 Dedicated instructions for reconfig., data exchange, and SI execution

 Proposed a dedicated fine-grained reconfigurable fabric (2-bit
granularity) that is optimized for run-time reconfiguration
◦ Partially reconfigurable in a 1D row structure

◦ Configuration relocation

◦ Optimized for 32-bit operations (size of a row)

◦ Only 12 external memory accesses to reconfigure a row

◦ Distributed configuration cache

 Binary compatibility for smaller/larger reconfigurable fabrics

 Carefully designed data memory access, including Cache access and
dedicated memory queues for streaming

 Tool chain that automatically creates configurations and interfaces
◦ Based on Hyperblocks, optimization of common paths, and predicated execution

- 31 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

src: http://ce.et.tudelft.nl/MOLEN/

- 32 - M. Damschen, KIT, 2016

 Reconfigurable Coprocessor

 Using a one-time instruction set extension
◦ Inspired by Garp

 Using a reconfigurable microcode (ρμ-code)
◦ Difference to traditional microcode: it does not execute

on fixed hardware facilities, but it operates on facilities
that the ρμ-code itself creates (i.e. reconfigures) to
operate upon

◦ Microcode to control the reconfiguration

◦ Microcode to control the SI execution

 Prototype uses a Virtex-II Pro FPGA
◦ Using the embedded PowerPC as core processor

- 33 - M. Damschen, KIT, 2016

 Loading and prefetching the configurations
◦ p-set (partial set), c-set (complete set), set-

prefetch

 Executing and prefetching the microcode for

SIs
◦ execute, execute-prefetch

 Load/store instructions
◦ movtx, movfx (move to/from eXchange registers)

 Synchronization instruction
◦ break

- 34 - M. Damschen, KIT, 2016

 p-set <address>
◦ performs the configuration of common

parts/ frequently used functions

 c-set <address>
◦ Performs configuration of the remaining

area that was not covered by p-set

◦ Note: c-set is executed more often than
p-set

 In case no partially reconfigurable
hardware is present, the c-set
instruction alone can be utilized to
perform all the necessary
configurations

Example:

Reconfigured once,
using p-set

Reconfigured
often, using
c-set

- 35 - M. Damschen, KIT, 2016

 The <address> points to a memory location

that contains Microcode
◦ Controlling the reconfiguration or the SI execution

◦ For reconfiguration the Microcode corresponds to a
bitstream (i.e. configuration data)
 Execution is terminated when a specific end address

(provided at the beginning of the Microcode) is
reached

◦ For SI execution the Microcode could correspond to
a state machine that controls the execution (not
further specified/explained by the authors)
 Terminated by a special ‘end_op’ Microcode

- 36 - M. Damschen, KIT, 2016

 set-prefetch <address>

◦ Prefetches the Microcode that is responsible for

reconfigurations into a local on-chip storage facility

(the ρμ -code unit)

◦ diminish microcode loading times

 execute <address>

◦ Triggers the execution of an SI

 execute-prefetch <address>

◦ Prefetches the Microcode that is responsible for SI

execution

- 37 - M. Damschen, KIT, 2016

 An exchange register file is used for explicit parameter
passing
◦ Size is implementation specific

◦ 512 entries for their Virtex-II Pro prototype

◦ The compiler performs the register allocation

 movtx XREGa Rb
◦ Move the content of general-purpose register Rb to XREGa

 movfx Ra XREGb
◦ Move the content of exchange register XREGb to general-purpose

register Ra

 The Virtex-II Pro prototype uses the dedicated PowerPC
interface to the so-called Device Control Registers (DCR)
to implement movtx and movfx

- 38 - M. Damschen, KIT, 2016

 Break
◦ Utilized to facilitate the parallel execution of the

reconfigurable processor and the core processor

◦ Synchronization mechanism that stalls the core
processor until the parallel execution of the
reconfigurable processor is completed

Implicit Synchronization: Explicit Synchronization:

src: [VWG+04]

- 39 - M. Damschen, KIT, 2016

 All instructions use a simple format

◦ Opcode: specifies the one-time instruction-set

extensions (assures that it does not overlap with

the instructions from the core processor)

◦ Address: the start address of the Microcode

◦ R/P bit: interpretation of the address

 Resident: an on-chip ROM for often used Microcodes

 Pageable: the
off-chip RAM for
other Microcodes

src: [VWG+04]

- 40 - M. Damschen, KIT, 2016

 The minimal ISA:
◦ c-set, execute, movtx, movfx

 This is essentially the smallest set of Molen instructions
needed to provide a working scenario

 By implementing the first two instructions (set/execute),
any suitable SI implementation can be loaded and
executed in the reconfigurable processor
◦ Reconfiguration latencies can be hidden by scheduling the set

instruction considerably earlier than the execute instruction

 The movtx and movfx instructions are needed to provide
the input/output interface between the SI and the
remaining application code

- 41 - M. Damschen, KIT, 2016

 The preferred ISA:
◦ p-set, c-set, set-prefetch, execute, execute-prefetch,

movtx, movfx

 In order to reduce reconfiguration latencies both p-
set and c-set instructions are utilized
◦ Then, the loading time of microcode will play an

increasingly important role

◦ Thus, the two prefetch instructions provide a way to
diminish the microcode loading times by scheduling them
well ahead of the moment that the microcode is needed

 Parallel execution is initiated by a set/execute
instruction and ended by a general purpose
instruction (same for minimal ISA)

- 42 - M. Damschen, KIT, 2016

 The complete ISA:
◦ p-set, c-set, set-prefetch, execute, execute-prefetch, movtx,

movfx, break

 Involves all ISA instructions including the break instruction

 In some applications, it might be performance-wise
beneficial to execute instructions on the core processor
and the reconfigurable processor in parallel
◦ The break instruction provides a mechanism to synchronize the

parallel execution of instructions by halting the execution of
instructions following the break instruction

◦ The sequence of instructions performed in parallel is initiated by
an execute instruction or a set instruction

- 43 - M. Damschen, KIT, 2016

src: [VWG+04]

 Note, CCU

means ‘Custom

Configured

Unit’, i.e. the

reconfigurable

fabric

- 44 - M. Damschen, KIT, 2016

 An instruction is either issued to the core

processor or to the reconfigurable

coprocessor (Arbiter decides)

M. Damschen, KIT, 2016

src: [VWG+04]

- 45 - M. Damschen, KIT, 2016

 In case of a exec/set etc. instruction, control signals
from the Decode block are transmitted to the Control
block, which performs the following steps:
1. Redirect the microcode location address to the ρμ-code

unit

2. Generate an internal code representing either an execute
or set instruction (“Ex/Set” signal) and send it to the
ρμ-code unit

3. Initiate the operation by generating “start reconf.
operation” signal to the ρμ-code unit

4. Reserve data memory control for the Reconfigurable
Processor by sending a memory occupy signal to the data
memory MUX

5. Stall the core processor (Emulation Instructions) and enter
a wait state until “end of reconf. operation” arrives

- 46 - M. Damschen, KIT, 2016

 An active “end of reconf. operation” signal

initiates the following actions:

1. Data memory control is released back to the Core

Processor

2. An instruction sequence is generated to ensure

proper exiting of the Core Processor from the wait

state

3. After exiting the wait state, the program execu-

tion continues with the instructions following the

instruction for the Reconfigurable Processor

- 47 - M. Damschen, KIT, 2016

 “Arbiter Emulation Instructions” are multiplexed to the core processor
instruction bus when the actual instruction is issued to the
reconfigurable processor
◦ Essentially drives the processor into a wait state

 Their Virtex-II Pro prototype uses the blr (branch to link register)
instructions to activate the wait state

 Before a set/execute/etc. instruction, the link register is initialized
(using the bl (branch and link) instruction) to point to that instruction

 bl label
label: c-set <addr>
 nop
 add
 ...

Code Example:

 bl label
label: blr
 nop
 add
 ...

Executed as:

label-4: bl # LinkReg  ‘label’
 # branch to ‘label’

label: blr # delay slot
label: blr # branch target
label: blr # branch target
label: blr # branch target
...

Control Flow during wait state

time

- 48 - M. Damschen, KIT, 2016

 To exit the wait state, the blrl (branch to link register and
link) instruction is used
◦ Updates the link register to point to the instruction that follows

the branch

◦ More care has to be taken when multiple set/exec instructions

shall be executed in parallel

 bl label
label: blrl
 nop
 add
 ...

Executed as:

label: blrl # branch target
 # LinkReg  ‘label’+4

label: blrl # branch target
label: blrl # branch target
label+4: nop # branch target (new link reg)
label+4: nop # branch target
label+8: add
label+12: ...

Control Flow when exiting the wait state

time

- 49 - M. Damschen, KIT, 2016

 The Sequencer mainly

determines the micro-

code execution sequence

 The ρ–Control Store is

used as a storage facility

for microcode

 The ρμ–code loading unit

is responsible for loading

the reconfigurable

microcode from the

memory

src: [VWG+04]

Start
Address

Addr.

Next
Address

Sequencer

ρ–Control
Store

ρμ–code
loading

unit

CCU

Memory

Ctrl.

- 50 - M. Damschen, KIT, 2016

 The Sequencer is used to translate
addresses of Microcode into
internal address that are then sent
to the ρ-Control Store Address
Register (ρCSAR)
◦ If the Microcode is stored in internal

ROM (resident, fixed), then the address
is just passed through

 The Residence Table in the
Sequencer is used to translate
addresses and to manage, which
Microcode is available in the
Control Store
◦ Triggers memory access in case a

required Microcode is not available

◦ Uses an LRU replacement scheme to
overwrite existing entries

src: [VWG+04]

◦ The “H” block calculates a hash of the
address that is used to access the
residence table

◦ The residence table contains the
information whether/where that
address is placed in the Control Store

- 51 - M. Damschen, KIT, 2016

 ρ-Control Store contain
different entries for set and
execute Microcodes
◦ They may differ in micro-

instruction word size

◦ Both contain different entries for
fixed (ROM) and dynamic (RAM)

 The actual Microcode is
decoded into Micro-
instructions that are stored in
the Microinstruction Register
(MIR) to control the
reconfigurable fabric

 The MIR value together with
the return status of the
reconfigurable fabric
determine the next Microcode

src: [VWG+04]

- 52 - M. Damschen, KIT, 2016

src: [VWG+04]

 set-prefetch, p-set, c-
set: Configure the reco-
nfigurable hardware

 movtx: provide input
parameters via XREGs

 execute-prefetch,
execute: Trigger SI
execution

 movfx: Read results
back

- 53 - M. Damschen, KIT, 2016

 Compiler relies on the Stanford SUIF2

Compiler Infrastructure for the front-end and

for the back-end on the Harvard Machine

SUIF framework

 Typically, pragmas denote a function that

shall be implemented using the reconfigu-

rable fabric

◦ The signature of the function implicitly specifies the

parameters that need to be passed

- 54 - M. Damschen, KIT, 2016

 The following essential features for a compiler targeting
custom computing machines are implemented:
◦ Code identification:

 A special pass in the SUIF front-end
 Based on code annotation with special pragma directives
 These function calls are marked for further modification

◦ Instruction set extension:
 Issuing set/execute instructions at the medium intermediate

representation (IR) level and low IR level

◦ Register file extension:
 Register allocation algorithm allocates the XREGs in a distinct pass

applied before the normal register allocation
 Introduced in Machine SUIF at low IR level

◦ Code generation:
 Performed when translating SUIF to Machine SUIF intermediate

representation

- 55 - M. Damschen, KIT, 2016

 Authors state that multiple
operations targeting the
reconfigurable fabric may
execute in parallel

 Microcode Bottleneck
◦ The Sequencer/ρ-Control Store

can perform at most one ope-
ration (set or execute) at a time

◦ Thus, the entire reconfigurable
fabric is stalled during reconf.

◦ And it is not possible to execute
two SIs at the same time

◦ ‘Self-controlled’ SI executions (i.e.
not relying on Microcode) are
mentioned but not explained any
further

src: [VWG+04]

- 56 - M. Damschen, KIT, 2016

src: [VWG+04]

 Memory
Bottleneck
◦ During SI exe-

cution, the core
CPU cannot
access the main
memory any
more

◦ Unclear,
whether
different SIs
can access
memory at the
same time

- 57 - M. Damschen, KIT, 2016

 Reconfigurable Coprocessor with a one-time instruction
set extension (inspired by Garp)
◦ Reconfiguring, Parameter passing, SI execution, synchronization

◦ Different ISA alternatives (minimal, preferred, complete)

 Using a reconfigurable microcode (ρμ-code)
◦ Controlling the reconfiguration

◦ Controlling the SI execution

◦ Sequencer, ρ–Control Store, ρμ–code Loading Unit

 Prototype uses PowerPC as core processor
◦ Arbiter for the instructions (issue either to core CPU or to

reconfigurable Coprocessor and send core CPU into ‘wait state’)

◦ Multiplexer for memory access

 Compiler Tool Chain

- 58 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 59 - M. Damschen, KIT, 2016

 Tightly coupled functional unit

◦ Using rather small amount of reconfigurable logic

 To some degree inspired by PRISM

◦ Want to improve the communication delay, thus

they propose a tight coupling

 Many other projects are (directly or indirectly)

inspired by PRISC

- 60 - M. Damschen, KIT, 2016

 A simple Programmable Functional Unit (PFU) that only
evaluates combinational functions
◦ 2 input, 1 output

 Carefully added to the microarchitecture such that is has
only a minimal impact to the processor’s cycle time
◦ Some extra

capacitive load
on the source
operand busses

◦ Increases the
size of the
multiplexer
for the result
operand bus

src: [RS94]

- 61 - M. Damschen, KIT, 2016

 Constraint: same delay as the delay of the already
existing ALU etc.
◦ Limiting the number of logic levels to bound the delay

◦ Their PFU uses 3 logic layers (i.e. rows of LUTs) that
should fit within a 200 MHz
cycle time

◦ Thus, the PFU can
use the same synchro-
nisation mechanisms
as the other FUs

 Small area footprint
(less than 1 KB on-
chip SRAM)

src: [RS94]

- 62 - M. Damschen, KIT, 2016

 One new instruction ‘Execute PFU’

 ‘LPnum’ defines which out of the 2048 different

SI types shall execute
◦ The authors state that “fewer than 200 PFU functions per

application” are used [RS94]

◦ Note: this is quite a lot and reflects the small size of the
functions/PFU

◦ However, the small PFU size might allow for such
frequent reconfigurations

src: [RS94]

- 63 - M. Damschen, KIT, 2016

 Each PFU is associated with a special 11-bit
register that contains the SI number that is
currently reconfigured into the PFU

 When an SI shall execute but is currently not
reconfigured, then an exception is raised and the
handler reconfigures the PFU
◦ Observation by developers: Typically less than 15% of

the configuration bits need to be set to ‘1’

◦ At first, a ‘hardware reset’ sets all PFU configuration bits
to ‘0’; afterwards, only the ‘1’s are programmed

◦ It takes 100-600 cycles to reconfigure 20% of the PFU
memory bits

- 64 - M. Damschen, KIT, 2016

src: [RS94]

 Compiler targets
data dependent
instructions
◦ Works on control /

data-flow graphs that
can be implemented
with logic functions

◦ Supports everything
except
 memory access
 floating point
 wide arithmetic (not

faster when executed
on PFU)

 mul/div
 variable-length shifts

- 65 - M. Damschen, KIT, 2016

src: [RS94]

 Complexity of an operation highly depends on its

bit-width
◦ Full bit-width (i.e. 32 bit) operations such as additions

or multiplications are too complex for PFU resources

◦ Try to identify the actually needed bit-width

 Bit-width analysis:
◦ A combination of forward and backward traversals on

the control/data-flow graph

◦ Exploits cases where only some of the bits in a word are
initialized (e.g. ‘load byte’, ‘load immediate’, ‘and 0xFF’)
or only some of the bits are used later on

◦ Algorithm iterates until no further bit-changes are found

- 66 - M. Damschen, KIT, 2016

 PFU expression optimization: targets ‘logic’

instruction sequences

 PFU table lookup: implements truth tables

 PFU prediction optimization: targets if-then-else

structures

 PFU jump optimization: targets sequences of if-then-

else instructions; calculates the final branch target to

reduce the number of sequential branches

 PFU loop optimization: loop unrolling to apply one of

the above techniques

- 67 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 68 - M. Damschen, KIT, 2016

 Inspired by PRISC

 Tightly coupled functional unit

 Using a MIPS-like core processor

 Supports more complex SIs

 Also supports I/O processing features

- 69 - M. Damschen, KIT, 2016

 Can reuse
pipeline-
internal
standard
components
◦ Data depen-

dency analysis
check

◦ Data fore-
warding

◦ Multicycle PFU
latency

 Binary com-
patibility to
MIPS

src: [WC96]

- 70 - M. Damschen, KIT, 2016

src: [WC96]

 Core CPU (estimated to be rather small) embedded into reconf. fabric
 Special PFU memory and configuration memory on the chip

M. Damschen, KIT, 2016

- 71 - M. Damschen, KIT, 2016

 PFU Configuration Memory
◦ The entire reconfigurable fabric is used as one PFU

◦ However, the configuration memory contains the
configuration data of multiple PFU configurations

◦ Reconfiguration from configuration memory is fast and
performed on demand (i.e. when the SI is about to execute)

 Circuit state and computational memory
◦ General-purpose memory to be used by SI implementations

◦ For instance to hold state variables (for multi cycle state-
machine based SIs)

◦ Or for temporary data storage

 Reconfigurable fabric has access to the I/O pins to
implement the protocols of I/O standards, e.g. UART

- 72 - M. Damschen, KIT, 2016

 Based on standard
components
◦ 4 Xilinx 4010 FPGAs

◦ 2 Aptix AX1024 Field-
Programmable Inter-
connect Chips (FPICs)

◦ 4 32Kx9 SRAMs

 Very limited functionality
◦ Only 6 (out of 32) registers

◦ Using time-division
multiplexing to feed
up to 8 signals across
one physical wire

◦ Results in 1.25 MHz
operation frequency

◦ Only configured during
startup

src: [WC96]

- 73 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 74 - M. Damschen, KIT, 2016

 Extension of the OneChip project

 Provides memory access for PFUs
◦ Note: PFU (Programmable Functional Unit) and RFU

(Reconfigurable FU) are used interchangeably; both
indicate an SI or the reconfigurable fabric (also called
FPGA)

 Providing multiple PFUs (each with potentially

multiple contexts)

 Support for superscalar execution

 Support for out-of-order execution

- 75 - M. Damschen, KIT, 2016

 Observation: SI execution latency is almost

certainly greater than one CPU cycle
◦ Either because the SI contains a state machine

◦ or because the critical path of the SI is too long for
the CPU frequency

 What should the pipeline do during SI

execution?
◦ Simple solution: stall (i.e. wait until SI completion)

◦ Alternative: continue executing other instructions in
parallel (like it is often done in the coprocessor
approach)

- 76 - M. Damschen, KIT, 2016

 Scalar: One operation per cycle (can be pipelined)

 SuperScalar (also called multiple issue processor):
potentially multiple instructions per cycle
◦ VLIW: the compiler explicitly determines, which instruc-

tions shall execute in parallel (Note: typically not called
superscalar, but somehow belongs to this category)

◦ In-order SuperScalar: The issue sequence of instructions
in the binary is respected, i.e. if a particular instruction
cannot execute (e.g. due to a data dependency) then the
instructions that follow that particular instruction are not
considered for execution (even if they could)

◦ Out-of-order Superscalar: Dynamic re-scheduling of the
instructions; potentially executing them in a different
sequence than written in the binary

- 77 - M. Damschen, KIT, 2016

 Problems may arise when executing SIs that

access memory in parallel (or even out-of-

order) to normal load/store instructions

Memory

Data
Cache

src: [CC01]

- 78 - M. Damschen, KIT, 2016

Hazard
Number

Hazard
Type

Actions Taken

1 SI rd after
CPU wr

1. Flush SI source addresses from CPU cache when
SI issues

2. Prevent SI reads while CPU store instructions
are pending

2 CPU rd af-
ter SI wr

3. Invalidate SI destination addresses in CPU
cache when SI issues

4. Prevent CPU reads from SI destination
addresses until SI writes its destination block

3 SI wr after
CPU rd

5. Prevent SI writes while CPU load instructions
are pending

4 CPU wr af-
ter SI rd

6. Prevent CPU writes to SI source addresses until
SI reads its source block

src: [CC01]

- 79 - M. Damschen, KIT, 2016

Hazard
Number

Hazard
Type

Actions Taken

5 SI wr after
CPU wr

7. Prevent SI writes while CPU store instructions
are pending

6 CPU wr af-
ter SI wr

8. Prevent CPU writes to SI destination addresses
until SI writes its destination block

7 SI rd after
SI wr

9. Prevent SI reads from locked SI destination
addresses

8 SI wr after
SI rd

10. Prevent SI writes to locked SI source addresses

9 SI wr after
SI wr

11. Prevent SI writes to locked SI destination
addresses

src: [CC01]

- 80 - M. Damschen, KIT, 2016

src: [CC01]

M. Damschen, KIT, 2016

- 81 - M. Damschen, KIT, 2016

 Fetch stage: fetches instructions from I-Cache to Dispatch queue

 Dispatch stage:
◦ instruction decoding

◦ register renaming

◦ Move instructions from dispatch queue to reservation station for core ISA
(BFU), memory (Mem), or SI (RFU)

◦ Add entries in the Block Lock Table (BLT, explained later) to lock memory
blocks when SIs are dispatched

◦ Until here, the instructions are handled in-order

 Issue stage: identifies ready instructions from the reservation
stations (considering data dependencies, memory consistency
etc.) and allow them to proceed in the pipeline
◦ Performed out-of-order

- 82 - M. Damschen, KIT, 2016

 Execute stage: executes the instructions in different
parallel pipelines for core ISA, memory access, and SIs

 Writeback stage:
◦ Move completed operation results to a ‘register update unit’ (not

the register file) and a ‘load/store queue’

◦ Scan the dependency chain of the completing instructions and
wake up any dependent instructions

 Commit stage:
◦ Retires instructions in-order (i.e. only Issue, Execute, and

Writeback stage operate out-of-order)

◦ Commits ‘register update unit’ data to the register file

◦ Commits ‘load/store queue’ data to the data cache

◦ Releases the resources that were used by the instructions

◦ Clears BLT entries to remove SI memory locks

- 83 - M. Damschen, KIT, 2016

 RS: Reservation
Station

 RBT: Recon-
figuration Bits
Table
◦ Acts as con-

figuration
manager

 Multiple multi-
context FPGAs
◦ Each containing

the configuration
of one SI at a time

 Local Storage
used for tem-
porary results
etc.

src: [CC01]

- 84 - M. Damschen, KIT, 2016

src: modified from [JC99]

 DPGA: Dynamically Programmable Gate Array; a multi-context
configuration cache for the FPGA

 Loaded denotes whether the configuration data is available in the
DPGA of the FPGA (each FPGA needs such a table)
◦ If yes, then the context ID shows which context it is

 Active
denotes
whether
or not
this SI
is the
currently
active
configu-
ration

unique

SI ID

- 85 - M. Damschen, KIT, 2016

 ‘Opcode’ indicates that this is the instr. format for SIs

 Rsource and Rdest point to registers that contain the source and
destination address in data memory
◦ ‘source block size’ and ‘destination block size’ indicate the amount of

data that will be read and written (important for memory consistency)

 Alternative: when the amount of read data and written data is
identical, one of the fields can be used to provide a third register
that points to a second source address

 Two ‘FPGA functions’ are reserved for manipulating the RBT and
for preloading the bitstream into an FPGA context (like ‘Helper
Instructions’)

src: [JC99]

M. Damschen, KIT, 2016

- 86 - M. Damschen, KIT, 2016

 How to inform which memory the SI accesses?

 Each SI specifies which memory region will be

read and which one will be written
◦ Using the base address (32-bit via register)

◦ And the block size (5-bit via ‘source block size’)

◦ Note: with 5 bit we can distinguish 32 different block
sizes

 Observation: Address space is 232 bytes large
◦ Idea: block size must be a power of two (2, 4, 8, …, 1G,

2G, 4G; note: ‘1’ is omitted) and the base address must
be aligned on a block boundary

- 87 - M. Damschen, KIT, 2016

 Example: given the block address (i.e. the base address of
the block) below and a ‘block size’ of 001002 = 410
◦ This indicates an ‘expanded’ block size of 24 = (1<<4) = 100002

= 1610 bytes

◦ Note: potential confusion between expectation and calculation. As
block size ‘1’ =20 is not supported, block size X is expanded to
block size 2X and reserves a block of size 2X+1

Block address 0000 0000 0000 0000 0110 1010 0010 0000

Expanded block
size

0000 0000 0000 0000 0000 0000 0001 0000

block mask 0000 0000 0000 0000 0000 0000 0001 1111

Masked block
address

0000 0000 0000 0000 0110 1010 001x xxxx

Any access to the locked region uses the same tag

src: [JC99]

- 88 - M. Damschen, KIT, 2016

 The BLT stores the information required to

determine the locked memory regions

Masked Block Address SI ID
Source /

Destination

0010 100x xxxx xxxx 2 Source

0011 0110 0xxx xxxx 2 Destination

0100 00xx xxxx xxxx 1 Destination

1001 00xx xxxx xxxx 1 Source
src: [JC99]

- 89 - M. Damschen, KIT, 2016

 Instructions are entered to and removed from the
BLT in-order

 When an SI is dispatched, its corresponding
entries are added to the BLT

 When an SI commits, its entries are removed
from the BLT

 The (out-of-order) issue stage probes the BLT for
memory locks to determine whether an
instruction is ‘ready’ to execute
◦ Also used to flush/invalidate cache lines, depending on

the hazard type

- 90 - M. Damschen, KIT, 2016

 Simulated architecture
◦ 4 instructions can be fetched, decoded, issued, and

committed per cycle

◦ 16-entry register update unit

◦ 8-entry load/store queue

◦ 4 integer ALUs

◦ 1 integer mul/div unit

◦ 2 memory ports

◦ 4 floating point ALUs

◦ 1 floating point mul/div unit

 Note: rather hardware-rich architecture
◦ Still they obtain speedup by adding the RFU

- 91 - M. Damschen, KIT, 2016

Legend:

All numbers are
‘times’, e.g. ‘2’
means 2 times
faster

 A: in-order GPP

 B: in-order
OneChip

 C: out-of-order
GPP

 D: out-of-order
OneChip

M. Damschen, KIT, 2016

Application Data size

OneChip

inorder

(A/B)

OneChip

outorder

(C/D)

Outorder

original

(A/C)

Outorder

OneChip

(B/D)

Total

(A/D)

Small 1.37 1.34 2.29 2.25 3.08

Medium 1.36 1.33 2.29 2.24 3.05

Large 1.38 1.35 2.33 2.29 3.15

Small 1.29 1.20 2.47 2.29 2.96

Medium 1.29 1.19 2.52 2.34 3.01

Large 1.25 1.16 2.53 2.35 2.93

Small 22.38 17.04 1.54 1.18 26.31

Medium 26.25 17.85 1.62 1.10 28.94

Large 29.92 20.57 1.56 1.07 32.02

Small 18.32 13.47 1.60 1.18 21.55

Medium 21.79 14.81 1.62 1.10 24.02

Large 24.43 16.27 1.61 1.07 26.13

Small 1.46 1.43 2.09 2.06 3.00

Medium 1.33 1.36 2.20 2.26 3.00

Large 1.16 1.24 2.48 2.65 3.07

Small 1.40 1.42 2.08 2.11 2.95

Medium 1.28 1.32 2.27 2.35 3.00

Large 1.13 1.18 2.62 2.72 3.08

Small 4.69 5.44 2.02 2.34 11.00

Medium 5.07 5.70 2.07 2.33 11.82

Large 5.23 5.91 2.08 2.36 12.33

Small 1.16 1.14 1.90 1.87 2.16

Medium 1.30 1.26 1.86 1.81 2.34

Large 1.28 1.24 1.87 1.81 2.32

M
P

EG
2

d
e

co
d

e

M
P

EG
2

e
n

co
d

e

JP
EG

e
n

co
d

e

JP
EG

d
e

co
d

e

A
D

P
C

M

e
n

co
d

e

A
D

P
C

M

d
e

co
d

e

P
EG

W
IT

e
n

cr
yp

t

P
EG

W
IT

d
e

cr
yp

t

- 92 - M. Damschen, KIT, 2016

 Observed limited potential for execution core ISA in
parallel to SIs
◦ Their benchmarks never used more than one RFU hardware

◦ 5 independent instructions for JPEG decoder

◦ 11 independent instructions for JPEG encoder

◦ The SI has a latency of 128 cycles

 Only the JPEG application benefited by using the BLT

 Recommendation of the authors: rather than using
the memory consistency scheme (i.e. the BLT
hardware) it should be sufficient to stall the CPU as
soon as it is about to perform a memory access while
an SI executes

- 93 - M. Damschen, KIT, 2016

 Introduced Superscalar out-of-order execution
to reconfigurable SIs
◦ Automatic management to avoid memory inconsistency

problems

 Reported speedup: 2x - 32x
◦ MPEG-2 encoder: 2x

◦ MPEG-2 decode: 11x

◦ ADPCM encode: 32x

◦ Comparing out-of-order issue with RFU against in-order
issue (still superscalar) without RFU

◦ Based on simulation

 Rather incomplete hardware prototype

- 94 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 95 - M. Damschen, KIT, 2016

 A VLIW processor, enhanced with a tightly-coupled
reconfigurable functional unit (RFU)
◦ Processor fetches 2 instructions per cycle that are executed

concurrently

◦ Using a classical 5-stage RISC pipeline

 Inspired by Garp

 Embedded in a System-on-Chip: XiSystem
◦ Provides an additional eFPGA to handle I/O communication

or to be used as reconfigurable Coprocessor

 Developed in collaboration with STMicroelectronics
that provided an actual tape-out (i.e. chip) of the
developed processor/system

- 96 - M. Damschen, KIT, 2016
src: [LTC+03]

 Register file provides
4 read and 2 write
ports
◦ shared by the 2

instructions

 32-bit Load/Store
architecture
◦ i.e. no direct data

memory access for the
RFU

M. Damschen, KIT, 2016

- 97 - M. Damschen, KIT, 2016

 Fully bypassed architecture, i.e. data forwarding

to reduce the effects of data dependencies

 Hardwired FUs + an additional pipelined RFU

◦ Called ‘Pipelined Configurable Gate Array’ (pGA or

PiCoGA)

◦ Supports multi-cycle instructions

◦ Can hold an internal state across several computations

◦ Synchronization and consistency is realized by hardware

stall logic based on a register locking mechanism (for

read-after-write hazards, i.e. when the PiCoGA wants to

write a register it is locked until writing is completed)

- 98 - M. Damschen, KIT, 2016

 Two-dimensional array of LUT-based Reconfigurable Logic
Cells (RLCs)
◦ 16x24 RLC array

◦ RLC contains two 4:2 LUTs that can be combined to form a 6:1,
5:2, or 4:4 logic function

src: [LTC+03]
M. Damschen, KIT, 2016

- 99 - M. Damschen, KIT, 2016

 Each row implements a possible stage of a
customized pipeline that executes in parallel to
the normal FUs
◦ 16 RLCs per row; 2-bit granularity

◦ 8 horizontal channel pairs for communication within one
row

◦ 12 vertical channel pairs for communication between the
rows

 A sequence of SIs can be processed in a pipelined
way

 Up to 4x32-bit input data and up to 2x32-bit
output data from/to register File

- 100 - M. Damschen, KIT, 2016

src: [LTC+03]

M. Damschen, KIT, 2016

 RLC-internal loop-back to cascade the 2 LUTs or to hold a state
(e.g. accumulate)
◦ Constant input (selected by MUX) to initialize state

 Extra Logic for
carry chain

 1 register per LUT
output

 An RLC can
implement
a 2-bit adder
◦ The 2 LUTs

compute both alternatives
(carry in 0 or 1) and the
actual ‘carry in’ selects
the result)

- 101 - M. Damschen, KIT, 2016

 Row elaboration is activated by an embedded control unit

 Execution enable signal for of each pipeline stage

 PiCoGA operation latency
depends on the executed
operation

- 102 - M. Damschen, KIT, 2016

 Row elaboration is activated by an embedded control unit

 Execution enable signal for of each pipeline stage

 PiCoGA operation latency
depends on the executed
operation

- 103 - M. Damschen, KIT, 2016

 Row elaboration is activated by an embedded control unit

 Execution enable signal for of each pipeline stage

 PiCoGA operation latency
depends on the executed
operation

- 104 - M. Damschen, KIT, 2016

 Row elaboration is activated by an embedded control unit

 Execution enable signal for of each pipeline stage

 PiCoGA operation latency
depends on the executed
operation

- 105 - M. Damschen, KIT, 2016

 pGA-load: load a configuration into the array

 pGA-free: remove a configuration

 pGA-op: execute an SI
◦ 32-bit variant that allows to execute a second instruction (VLIW) in parallel but only

offers 2 source registers

◦ 64-bit variant that uses both VLIW slots but therefore provides 4 source registers

configuration specification
region

specification
pGA-load

operation

specification

32-bit

pGA-op
Source 1 Source 2 Dest 1 Dest 2

64-bit

pGA-op
Source 1 Source 2

operation

specification
Dest 1 Dest 2 Source 3 Source 4

src: [CCG+03]

- 106 - M. Damschen, KIT, 2016

 Storing 4 configurations for each RLC
◦ Single-cycle context switch

 Row-wise partial reconfiguration

 Interface between core CPU and reconfigurable fabric
buffers the ‘configuration load’ instructions that are
then performed one after the other
◦ Thus, the core CPU does not need to wait (stall) for

reconfiguration completion

◦ SIs may execute during reconfiguration

 192-bit bus to 2nd level on-chip configuration cache
◦ 16 cycles to receive a complete configuration

◦ In a later work extended to 256-bit and attached to AHB

- 107 - M. Damschen, KIT, 2016

 Embedded
FPGA (eFPGA):
◦ fine-grained

(1-bit granu-
larity)

◦ Homoge-
neous

◦ Single-context

◦ Configurable
Pull-up/Pull-
down I/O pads

 TIC: standard
Test Interface
Controller

src: [LCB+06]

- 107 - M. Damschen, KIT, 2016

- 108 - M. Damschen, KIT, 2016

src: [LCB+06]

M. Damschen, KIT, 2016

- 109 - M. Damschen, KIT, 2016

 The eFPGA is memory-mapped to 256 reserved addresses
◦ i.e. an access to theses particular addresses goes to the eFPGA instead of

the memory

 2 unidirectional FIFOs with 32 32-bit locations each
◦ The ‘Write FIFO’ (i.e. to eFPGA) additionally stores the lower 8-bits of the

address to identify which memory mapped address was accessed

 The eFPGA/FIFOs can generate interrupts to control the DMA unit
◦ This allows that the eFPGA can be used as autonomous data-stream

Coprocessor

 The eFPGA can be clocked from different sources (system- or
external clock or both) to adapt to different critical paths on the
eFPGA and to different bandwidth requirements
◦ For instance, the eFPGA can use a slowed-down version of the system

clock (using the clock dividers) to process data in parallel, then serialize
the results and use a high-frequency external clock to provide the
required bandwidth

- 110 - M. Damschen, KIT, 2016

src: [LCB+06]

M. Damschen, KIT, 2016

- 111 - M. Damschen, KIT, 2016

src: [LCB+06]

 eFPGA occupies 6
mm2 for 15-Kgate
capacity

 PiCoGA occupies 11
mm2 for 15.4-Kgate
capacity
◦ Mainly due to multiple

contexts

- 112 - M. Damschen, KIT, 2016

 Using an MPEG-2 encoder application

src: [LCB+06]

- 113 - M. Damschen, KIT, 2016 src: [LCB+06]

 Compared with ‘XiRisc without PiCoGA’:

 Compared with TI C6713: VLIW running at

225 MHz, issuing up to 8

integer

instructions

per cycle

- 114 - M. Damschen, KIT, 2016

 Used for I/O peripherals and for Coprocessor

computation

src: [LCB+06]

- 115 - M. Damschen, KIT, 2016

 XiRisc: VLIW RISC architecture enhanced by run-
time reconfigurable function unit

 PiCoGA: pipelined, runtime configurable, row-
oriented array of LUT-based cells

 Reported Speedup ranges from 1.5x to 15.8x

 Up to 89% energy consumption reduction

 Embedded in a System-on-Chip: XiSystem

 Developed in collaboration with STMicro-
electronics that provided an actual tape-out of
the developed chip

- 116 -

Institut für Technische Informatik
Chair for Embedded Systems - Prof. Dr. J. Henkel

- 117 - M. Damschen, KIT, 2016

 Dedicated for a specific application or domain, e.g.
arithmetic operations

 Still programmable/reconfigurable
◦ but typically operating at lower efficiency when targeting a

different domain

 Problem: Design-space-exploration
◦ Which FPGA structure is suitable/best?

◦ How can the tools (e.g. place&route) handle that structure?

 Realized by Architecture Description Languages (ADLs)
◦ Automatic generation of physical layout that implements the FPGA

(for ASIC)

◦ Automatic generation of HDL code that describes the FPGA (for
simulation)

◦ Automatic generation of place&route tools targeting the FPGA

- 118 - M. Damschen, KIT, 2016 src: Prof. Noll, RWTH Aachen

- 119 - M. Damschen, KIT, 2016 src: Prof. Noll, RWTH Aachen

- 120 - M. Damschen, KIT, 2016 src: Prof. Noll, RWTH Aachen

- 121 - M. Damschen, KIT, 2016

 Engineering Samples available since end of

2011

 28 nm Technology

◦ Manufactured by TSMC

 6-input LUTs

 Dual 12-bit 1MSample/s ADC

◦ Incl. on-chip sensors for temperature and power

supply (1.0V or 0.9V)

- 122 - M. Damschen, KIT, 2016

 The ‚typical‘ problems, i.e. those that are improved from
generation to generation
◦ Power, Performance, …

 Problem: Yield
◦ Especially large chips have typically yield problems

◦ It takes a long time until (in comparison to smaller FPGAs) until
they are available in larger quantities (or: at reasonable prices)

 Problem: Maximum size
◦ So far: limited by yield

◦ Workaround: connect multiple FPGAs on a PCB

◦ Problem: Limited I/O Pins, Performance of Inter-FPGA connections,
Distributing the clocks, larger power consumption, complicated
PCB design, …

 Solution: Stacked Silicon Interposer (also called 2.5 D chips)

- 123 - M. Damschen, KIT, 2016

src: Xilinx WP380 v1.0

- 124 - M. Damschen, KIT, 2016

SLR: Super Logic Region

src: Xilinx WP380 v1.2

- 125 - M. Damschen, KIT, 2016

src: Xilinx WP380 v1.2

- 126 - M. Damschen, KIT, 2016

src: Xilinx WP380 v1.2

 Improves yield of 28nm FPGAs significantly
◦ Disadvantage: stacking (technically complicated,

but seems to work)

 It is easy to create different FPGA families and

sizes by

combining

different

FPGA fabrics

on one

interposer

- 127 - M. Damschen, KIT, 2016

 This technology would also allow to integrate

state-of-the-art FPGAs with application-specific

logic in a seamless and easy way

 E.g. combining:
◦ One/Two Virtex-7 Super Logic Regions

◦ One customized (reconfigurable) CPU ASIC
On-chip DRAM for Cache/Scratchpad

 Advantages:
◦ high-bandwidth low-latency connections

◦ Stacked chips may be manufactured in different
technologies

- 128 - M. Damschen, KIT, 2016

src: http://www.eetimes.com/design/eda-
design/4230786/Building-3D-ICs--Tool-Flow-and-Design-
Software-Part-
2?cid=NL_ProgrammableLogic&Ecosystem=programmable-logic

- 129 - M. Damschen, KIT, 2016

 Combination with Xilinx 7-series FPGA (called
Programmable Logic – PL) and an ARM Cortex-A9
Dual-Core SoC (called Processing System – PS)
◦ Smaller Zynq devices (Z-7010 and Z-7020) use the low-

end Artix FPGA fabric and run the ARM at up to 800 MHz

◦ Larger Zynq devices (Z-7030, Z-7045, and Z-70100) use
the middle-end Kintex FPGA fabric and run the ARM at
up to 1 GHz

 The ARM can be used even without configuring
anything to the FPGA
◦ Still, the ARM is coupled in many interesting ways to the

FPGA that allow nice combinations of CPU and
(reconfigurable) accelerators

- 130 - M. Damschen, KIT, 2016

 Dual Core ARM
◦ Single and double precision Vector Floating Point Unit

◦ Timers, Watchdogs, Counters, and Interrupts

 Caches
◦ 32 KB Level 1 4-way set-associative instruction and data caches (private per CPU)

◦ 512 KB 8-way set-associative Level 2 cache (shared between the CPUs)

 On-Chip Memory
◦ On-chip boot ROM

◦ 256 KB on-chip RAM (OCM, aka Scratchpad)

 External Memory Interfaces
◦ Multiprotocol dynamic memory controller

◦ 16-bit or 32-bit interfaces to DDR3, DDR3L, DDR2, or LPDDR2

◦ ECC support in 16-bit mode

◦ 1GB of address space using single rank of 8-, 16-, or 32-bit-wide memories

◦ Several Static memory interfaces (SRAM, NOR Flash, NAND Flash, …)

 Support for many peripherals and I/O interfaces (GigE, USB, CAN, SPI, …)

- 131 - M. Damschen, KIT, 2016

 Accelerator coherency port (ACP) interface enabling coherent accesses
from PL to CPU memory space

 Dual-ported, on-chip RAM (256 KB)
◦ Accessible by CPU and programmable logic (PL)

◦ Designed for low latency access from the CPU

 8-channel DMA
◦ Supports multiple transfer types: memory-to-memory, memory-to-peripheral,

peripheral-to-memory, and scatter-gather

◦ 64-bit AXI interface, enabling high throughput DMA transfers

◦ 4 channels dedicated to PL

 DDR memory controller is multi-ported and enables PS and PL to have
shared access
◦ One 64-bit port is dedicated for the ARM CPU(s) via the L2 cache controller and can

be configured for low latency

◦ Two 64-bit ports are dedicated for PL access

◦ One 64-bit AXI port is shared by all other AXI masters via the central interconnect

- 132 - M. Damschen, KIT, 2016

- 133 - M. Damschen, KIT, 2016

 Memory

◦ 512 MB DDR3
memory (1066
Mbps)

◦ 256 Mb Quad
SPI Flash

 Connectivity

◦ 10/100/1000
Ethernet

◦ USB OTG
(Device/Host/O
TG), USB UART

 Expansion

◦ FMC (Low Pin
Count)

◦ 5 Pmod™
headers (2x6)

 Video/Display

◦ HDMI output
(1080p60 +
audio)

◦ VGA connector

◦ 128 x 32 OLED

◦ User LEDs (9)

 User Inputs

◦ Slide switches
(8)

◦ Push button
switches (7)

 Audio

◦ 24-bit stereo
audio CODEC

◦ Stereo line
in/out,
Headphone,
Microphone
input

 Analog

◦ Xilinx XADC
header,
supports 4
analog inputs

 Price

◦ 320 USD
(academic)

src: http://www.zedboard.org/

- 134 - M. Damschen, KIT, 2016 src: http://www.xilinx.com/

 Memory

◦ DDR3 Component
Memory 1GB (PS)

◦ DDR3 SODIM Memory
1GB (PL)

◦ 2X16MB Quad SPI Flash
(config)

 Communication

◦ PCIe Gen2x4

◦ SFP+ and SMA Pairs

◦ GigE RGMII Ethernet (PS)

◦ USB OTG 1 (PS) - Host
USB, USB UART

 Expansion Connectors

◦ 2x FMC (HPC and LPC)

◦ Dual Pmod (8 I/O Shared
with LED’s)

◦ Single Pmod (4 I/O)

◦ Some Buttons, Switches,
LEDs

 Video/Display

◦ HDMI IN and OUT 8 color
RGB 4.4.4

 Price

◦ 2500 USD

- 135 - M. Damschen, KIT, 2016

 “The UltraScale architecture was developed to scale
from 20nm planar through 16nm and beyond FinFET
(FF) technologies, and from monolithic through 3D
ICs”

 UltraScale (20nm planar) first silicon in 2013
◦ Shipping to first customers since Nov. 2013

 UltraScale+ (16nm FinFET) first silicon using TSMC
16nm FF in 2014
◦  Postponed till

TSMC 16nm FF+
is available

◦ Planed to ship in
Q4/2015

src: http://www.xilinx.com/

- 136 - M. Damschen, KIT, 2016 src: Intel

 Gate has stronger influence on channel
◦ Faster transistor

◦ Or: lower voltage  lower leakage

 There are often multiple fins between source and gate

- 137 - M. Damschen, KIT, 2016

src: “14 nm Technology Announcement”,
 Intel, Mark Bohr, August 2014

- 138 - M. Damschen, KIT, 2016

src: “14 nm Technology Announcement”,
 Intel, Mark Bohr, August 2014

- 139 - M. Damschen, KIT, 2016

src: “14 nm Technology Announcement”,
 Intel, Mark Bohr, August 2014

- 140 - M. Damschen, KIT, 2016

 Highly optimized critical paths and built-in high-speed memory,
cascading to remove bottlenecks in DSP and packet processing

 Enhanced DSP slices incorporating 27x18-bit multipliers and dual
adders that enable a massive jump in fixed-point and IEEE Std 754
floating-point arithmetic performance and efficiency

 Step function in inter-die bandwidth for 2nd-generation 3D IC systems
integration and new 3D IC wide-memory optimized interface

 Massive I/O and memory bandwidth, including support for next
generation memory interfacing with dramatic reduction in latency,
optimized with multiple hardened, ASIC-class 100G Ethernet, Interlaken,
and PCIe® IP cores

 Power management with a significant scope of static- and dynamic-
power gating across a wide range of functional elements, yielding
significant power savings

src: Xilinx Backgrounder “Introducing Xilinx
UltraScale™ Architecture: Industry’s first
ASIC-class all programmable architecture”

- 141 - M. Damschen, KIT, 2016

 “[…] interconnect is the number one bottleneck
to system performance.”

 “The routing efficiencies delivered through the
UltraScale Architecture essentially removes
routing congestion completely. The result is
simple: If the design fits, it routes. This holds
true for device utilization at levels of greater than
90% with no performance degradation or increase
in system latency.”

src: Xilinx Backgrounder “Introducing Xilinx
UltraScale™ Architecture: Industry’s first
ASIC-class all programmable architecture”

- 142 - M. Damschen, KIT, 2016

 “The largest UltraScale+ device, the VU13P,

will have 432 Mbits of UltraRAM.”

src: Xilinx Xcell Issue 90

- 143 - M. Damschen, KIT, 2016

 A startup company (founded 2003) that developed a 3D
Programmable Logic Device (3PLD; basically an FPGA)
◦ Uses time as third dimension (rather than waiting for 3D-stacked

chips to become mainstream)

 Achieved by dynamically reconfiguring
logic, memory, and interconnect
at multi-GHz rates
◦ Executing each portion of a

design in an automatically
defined sequence of steps

 Spacetime compiler (i.e. synthesis,
place&route tools) manages ‘ultra-
rapid’ reconfiguration transparently

src: Tabula “ABAX Product Family Overview”

- 144 - M. Damschen, KIT, 2016

 Configuration data is stored

locally to the resources they

control
◦ Organized like

a stack that
cycles through
the folds

src: Tabula “Spacetime Architecture White Paper”

- 145 - M. Damschen, KIT, 2016

 The user clock is divided into sub-cycles which
form the folds
◦ The currently available device core operates at up to 1.6

GHz

◦ The user clock depends upon the number of folds

◦ E.g. 200 MHz for 8 folds (figure shows an 8-fold
spacetime clock) or 400 MHz for 4 folds etc.

◦ Up to 8 folds are supported

src: Tabula “Spacetime Architecture White Paper”

- 146 - M. Damschen, KIT, 2016

 3D device with multiple layers (so-called ‘folds’)

in which computation and signal transmission

can occur
◦ Each ‘fold’ performs a portion of the desired

functionality and stores the result in place

 After configuring the next fold, it uses the locally

stored data to perform the next portion of the

function

◦  the data is not moving (at least not far), but the
hardware is changing (data can stay local)

◦  lower demand for interconnect resources

- 147 - M. Damschen, KIT, 2016

 All resources can be modified and reused

when going from one fold to the next

◦ Memory ports, LUTs, routing, …

◦ For instance, a 8-bit wide path in 8 folds delivers

64-bits per user clock cycle

◦ A single-port memory appears to have 8 ports that

can access arbitrary addresses

 or a 8-fold wider memory port

 or 8 independent memories (total capacity must not
exceed capacity of the original single-port memory)

- 148 - M. Damschen, KIT, 2016
src: Tabula “ABAX Product Family Overview”

 ‘Spacetime’ Fabric features:
◦ Logic: 0.22M – 0.63M LUTs (4-input

LUT equivalent), operating at 1.6 GHz

◦ DSP blocks: up to 1280 1.6 GHz 18x18
multiplier/accumulators

◦ Memory: 5.5 MBytes (!) @ 1.6 GHz,
featuring 8 and 16 ports and built-in
ECC and FIFO
controller

 Manufactured

using TSMC’s

40 nm process

M. Damschen, KIT, 2016

- 149 - M. Damschen, KIT, 2016

 2.5x Logic Density (LUTs/mm2 for 40 nm

devices) and 2.0x Memory Density (due to

single port memories)

◦ Logic, memory, and routing resources are all

re-used multiple times per user cycle

 higher density and shorter interconnect

 2.9x more Memory Ports (in total, i.e. over all

memory ports on the device)

- 150 - M. Damschen, KIT, 2016

 Automatically maps, places, and routes existing
designs into an
ABAX device

 All control of
the hardware
reconfiguration
is automatically
and invisibly
managed by
the Spacetime
compiler

src: Tabula “ABAX Product Family Overview”

- 151 - M. Damschen, KIT, 2016

 View Placement

and Routing

 Visualize timing

critical paths and

slack histograms

 Cross probe between

HDL source, schematic,

and place and route

views

src: Tabula “Stylus Software Overview”

- 152 - M. Damschen, KIT, 2016 M. Damschen, KIT, 2016
src: Tabula “3PLD Development Kit”

- 153 - M. Damschen, KIT, 2016
src: Tabula “3PLD Development Kit”

- 154 - M. Damschen, KIT, 2016

 Next generation uses Intel’s 22nm FinFET
technology (called Tri-Gate)
◦ Announced February 2012

src: tabula.com

- 155 - M. Damschen, KIT, 2016

src: tabula.com

- 156 - M. Damschen, KIT, 2016

 2 GHz Spacetime clock

 12-fold architecture

 570,000 TabLUTs

 23 MB of RAM (up to 12/24 ports per block)

 Recent News: Company shut down in March

2015

src: tabula.com

- 157 - M. Damschen, KIT, 2016

[WAL+93] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman, S. Ghosh: “PRISM-II
Compiler and Architecture”, IEEE Workshop on FPGAs, 1993.

[HW97] J. R. Hauser, J. Wawrzynek: “Garp: A MIPS Processor with a Reconfigurable Coprocessor”, IEEE Symposium on
FPGA-Based Custom Computing Machines, pp. 24-33, 1997.

[CHW00] T. J. Callahan, J. R. Hauser, J. Wawrzynek: “The Garp Architecture and C Compiler”, IEEE Computer, vol. 33,
no. 4, pp. 62-69, 2000.

[VWG+04] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, E.M. Panainte: “The MOLEN Polymorphic
Processor”, IEEE Transactions on Computers, vol. 52, no. 11, pp. 1363-1375, 2004.

[RS94] R. Razdan, M. D. Smith: “A High-Performance Microarchitecture with Hardware-programmable Functional
Units”, International Symposium on Microarchitecture, pp. 172-180, 1994.

[WC96] R. D. Wittig, P. Chow: “OneChip: an FPGA processor with reconfigurable logic”, IEEE Symposium on FPGAs
for Custom Computing Machines, pp. 126-135, 1996. NOTE: actual screenshots taken from dissertation from
Wittig (same name as paper) from 1995 due to their better visual quality

[JC99] J. A. Jacob, P. Chow: “Memory interfacing and instruction specification for reconfigurable processors”,
International Symposium on Field Programmable Gate Arrays, pp. 145-154, 1999.

[CC01] J. E. Carrillo, P. Chow: “The effect of reconfigurable units in superscalar processors”, International
Symposium on Field Programmable Gate Arrays, pp. 141-150, 2001.

[LTC+03] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, R. Guerrieri: “A VLIW Processor with Reconfigurable
Instruction Set for Embedded Application”, IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1876-1886,
Nov. 2003.

[CCG+03] F. Campi, A. Cappelli, R. Guerrieri, A. Lodi, M. Toma, A. La Rosa, L. Lavagno, C. Passerone, R. Canegallo:
“A Reconfigurable Processor Architecture and Software Development Environment for Embedded Systems”, 17th
International Symposium on Parallel and Distributed Processing, pp. 171.1, 2003.

[LCB+06] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De Bartolomeis, L. Ciccarelli, R. Giansante, A.
Deledda, F. Campi, M. Toma, R. Guerrieri: “XiSystem: A XiRisc-Based SoC with Reconfigurable IO Module”, IEEE
Journal of Solid-State Circuits, vol. 41, no. 1, pp. 85-96, 2006.

